Poleward intensification of midlatitude extreme winds under warmer climate

Publication Year
2023

Type

Journal Article
Abstract

Our study investigates the global impact of midlatitude cyclones on extreme wind speed events in both hemispheres under a warmer climate. Using the latest version of the high-resolution ≈ 50 km grid-spacing atmospheric climate model AM4, developed by the Geophysical Fluid Dynamics Laboratory, we conducted simulations covering the 71-years period 1949–2019 for both the present-day climate and an idealised future global warming climate scenario with a homogeneous Sea Surface Temperature (SST) increase by 2 K. Our findings reveal that extreme near-surface wind speeds increase by up to 3% K−1 towards the poles while decrease by a similar amount in the lower midlatitudes. When considering only extreme wind speed events objectively attributed to midlatitude cyclones, we observe a migration by the same amount towards higher latitudes both in percentage per degree SST warming and absolute value. The total number of midlatitude cyclones decreases by roughly 4%, but the proportion of cyclone-associated extreme wind speed events increases by 10% in a warmer climate. Finally, Northwestern Europe, the British Isles, and the West Coast of North America are identified as hot spots with the greatest socio-economic impacts from increased cyclone-associated extreme winds.

Journal
npj climate and atmospheric science
Date Published
12/2023